Synergistic Interaction Between Phage Therapy and Antibiotics Clears Pseudomonas Aeruginosa Infection in Endocarditis and Reduces Virulence
نویسندگان
چکیده
Background Increasing antibiotic resistance warrants therapeutic alternatives. Here we investigated the efficacy of bacteriophage-therapy (phage) alone or combined with antibiotics against experimental endocarditis (EE) due to Pseudomonas aeruginosa, an archetype of difficult-to-treat infection. Methods In vitro fibrin clots and rats with aortic EE were treated with an antipseudomonas phage cocktail alone or combined with ciprofloxacin. Phage pharmacology, therapeutic efficacy, and resistance were determined. Results In vitro, single-dose phage therapy killed 7 log colony-forming units (CFUs)/g of fibrin clots in 6 hours. Phage-resistant mutants regrew after 24 hours but were prevented by combination with ciprofloxacin (2.5 × minimum inhibitory concentration). In vivo, single-dose phage therapy killed 2.5 log CFUs/g of vegetations in 6 hours (P < .001 vs untreated controls) and was comparable with ciprofloxacin monotherapy. Moreover, phage/ciprofloxacin combinations were highly synergistic, killing >6 log CFUs/g of vegetations in 6 hours and successfully treating 64% (n = 7/11) of rats. Phage-resistant mutants emerged in vitro but not in vivo, most likely because resistant mutations affected bacterial surface determinants important for infectivity (eg, the pilT and galU genes involved in pilus motility and LPS formation). Conclusions Single-dose phage therapy was active against P. aeruginosa EE and highly synergistic with ciprofloxacin. Phage-resistant mutants had impaired infectivity. Phage-therapy alone or combined with antibiotics merits further clinical consideration.
منابع مشابه
In vitro Evaluation of Methylxanthines and Some Antibiotics: Interaction against Staphylococcus aureus and Pseudomonas aeruginosa
Background: The development of resistance to antimicrobial agents is a major problem in chemotherapy. Finding agents which potentiate antimicrobial activity could be favorable. There are some reports that methylxanthines changed the inhibitory effect of antibacterial agents. Thus, possible synergistic effect of methylxanthines, aminophylline and caffeine on some antibiotics, carbenicillin, ceft...
متن کاملEvaluation of the synergistic effect of tomatidine with several antibiotics against standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli
Antibiotic resistance is an important problem in antibiotic treatment of infections, particularly in hospitals. Tomatidine is a plant secondary metabolite with antimicrobial and antifungal effects. This study examined the possible synergistic effect tomatidine with several antibiotics against standard and clinical strains of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa a...
متن کاملEvaluation of the synergistic effect of tomatidine with several antibiotics against standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli
Antibiotic resistance is an important problem in antibiotic treatment of infections, particularly in hospitals. Tomatidine is a plant secondary metabolite with antimicrobial and antifungal effects. This study examined the possible synergistic effect tomatidine with several antibiotics against standard and clinical strains of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa a...
متن کاملIdentification of virulence genes in Pseudomonas aeruginosa isolated from human and animal samples by multiplex-PCR and their antibiotic resistance pattern
Background: Pseudomonas aeruginosa is a leading cause of Hospital-acquired infection worldwide. A major problem in the treatment of bacterial infections is the emergence of strains with multiple resistances (MDR). The aim of this study was to identify virulence genes lasB, toxA, algD, exos in Pseudomonas aeruginosa isolates from human and animal by Multiplex-PCR method and determination of anti...
متن کاملFrequency of Exotoxin A, Exoenzyme, Alginate and PprI and PprL Virulence Genes in Animal and Human Pseudomonas Aeruginosa Isolates and Determination of Antibiotic Resistance Pattern
Background and Aims: Pseudomonas aeruginosa is the most important cause of various nosocomial infections and mastitis in dairy cattle and the development of antibiotic resistance. The aim of this study was to determine the antibiotic resistance of Pseudomonas aeruginosa and the presence of virulence genes in human and animal samples. Materials and Methods: In this study, 102 human and animal st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 215 شماره
صفحات -
تاریخ انتشار 2017